Phosphorylation of Thylakoid Proteins of Oryza sativa: In Vitro Characterization and Effects of Chilling Temperatures.

نویسندگان

  • B A Moll
  • M Eilmann
  • K E Steinback
چکیده

The phosphorylation of thylakoid proteins of rice (Oryza sativa L.) was studied in vitro using [gamma-(32)P]ATP. Several thylakoid proteins are labeled, including the light-harvesting complex of photosystem II. Protein phosphorylation is sensitive to temperature, pH, and ADP, ATP, and divalent cation concentrations. In the range pH 7 to 8.2, phosphorylation of the light-harvesting polypeptides declines above pH 7.5, whereas labeling of several other thylakoid polypeptides increases. Increasing divalent cation concentration from 3 to 20 millimolar results in a decrease in phosphorylation of the 26 kilodalton light-harvesting complex polypeptide and increased phosphorylation of several other polypeptides. ADP has an inhibitory effect on the phosphorylation of the light-harvesting complex polypeptides. Phosphorylation of the 26 kilodalton light-harvesting polypeptide requires 0.45 millimolar ATP for half-maximal phosphorylation, compared to 0.3 millimolar for the 32 kilodalton phosphoprotein. Low temperature inhibits the phosphorylation of thylakoid proteins in chilling-sensitive rice. However, phosphorylation of histones by thylakoid-bound kinase(s) is independent of temperature in the range of 25 to 5 degrees C, suggesting that the effect of low temperature is on accessibility of the substrate, rather than on the activity of the kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chilling Sensitivity in Oryza sativa: The Role of Protein Phosphorylation in Protection against Photoinhibition.

The effects of exposure to low temperature on photosynthesis and protein phosphorylation in chilling-sensitive and cold-tolerant plant species were compared. Chilling temperatures resulted in light-dependent loss of photosynthetic electron transport in chilling-sensitive rice (Oryza sativa L.) but not in cold-tolerant barley (Hordeum vulgare L.). Brief exposure to chilling temperatures (0-15 de...

متن کامل

Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro.

The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. "Marketer") and spinach (Spinacia oleracea L. "Bloomsdale") were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-...

متن کامل

Heat shocks increase the chilling tolerance of rice (Oryza sativa) seedling radicles.

The growth of rice (Oryza sativa L., cv. M202) seedling radicles, initially 10 +/- 1 mm long, was linear for the 96 h it took them to grow to 150 mm at 25 degrees C. Exposure to 5 degrees C for 24 h reduced the rate of growth by about 50%, and longer exposures caused a progressive reduction in growth. Initial radicle length significantly affected chilling sensitivity: with 2 days at 5 degrees C...

متن کامل

Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection

Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay...

متن کامل

Effect of Endophytic Fungus, Piriformospora Indica, on Growth and Activity of Antioxidant Enzymes of Rice (Oryza Sativa L.) Under Salinity Stress

Abiotic stresses including salinity are the major limiting factors of growth and crop production worldwide. Microbial endophytes as the most important soil microorganisms, by modifying plants at genetical, physiological and ecological levels increase their yield per area unit and provide the possibility of crop production in saline and arid soils or climates with biotic and abiotic stresses. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 1987